Abstract
Pulmonary nodule detection is essential to reduce the mortality of lung cancer. One-stage detection methods have recently emerged as high-performance and lower-power alternatives to two-stage lung nodule detection methods. However, it is difficult for existing one-stage detection networks to balance sensitivity and specificity. In this paper, we propose an end-to-end detection mechanism combined with a channel-wise attention mechanism based on a 3D U-shaped residual network. First, an improved attention gate (AG) is introduced to reduce the false positive rate by employing critical feature dimensions at skip connections for feature propagation. Second, a channel interaction unit (CIU) is designed before the detection head to further improve detection sensitivity. Furthermore, the gradient harmonizing mechanism (GHM) loss function is adopted to solve the problem caused by the imbalance of positive and negative samples. We conducted experiments on the LUNA16 dataset and achieved a performance with a competition performance metric (CPM) score of 89.5% and sensitivity of 95%. The proposed method outperforms existing models in terms of sensitivity and specificity while maintaining the attractiveness of being lightweight, making it suitable for automatic lung nodule detection.
Funder
Chongqing Natural Science Foundation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献