Channel-Wise Attention Mechanism in the 3D Convolutional Network for Lung Nodule Detection

Author:

Zhu XiaoyuORCID,Wang Xiaohua,Shi YuetingORCID,Ren ShiweiORCID,Wang WeijiangORCID

Abstract

Pulmonary nodule detection is essential to reduce the mortality of lung cancer. One-stage detection methods have recently emerged as high-performance and lower-power alternatives to two-stage lung nodule detection methods. However, it is difficult for existing one-stage detection networks to balance sensitivity and specificity. In this paper, we propose an end-to-end detection mechanism combined with a channel-wise attention mechanism based on a 3D U-shaped residual network. First, an improved attention gate (AG) is introduced to reduce the false positive rate by employing critical feature dimensions at skip connections for feature propagation. Second, a channel interaction unit (CIU) is designed before the detection head to further improve detection sensitivity. Furthermore, the gradient harmonizing mechanism (GHM) loss function is adopted to solve the problem caused by the imbalance of positive and negative samples. We conducted experiments on the LUNA16 dataset and achieved a performance with a competition performance metric (CPM) score of 89.5% and sensitivity of 95%. The proposed method outperforms existing models in terms of sensitivity and specificity while maintaining the attractiveness of being lightweight, making it suitable for automatic lung nodule detection.

Funder

Chongqing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3