Blockchain-Enabled: Multi-Layered Security Federated Learning Platform for Preserving Data Privacy

Author:

Mahmood Zeba,Jusas VaciusORCID

Abstract

Privacy and data security have become the new hot topic for regulators in recent years. As a result, Federated Learning (FL) (also called collaborative learning) has emerged as a new training paradigm that allows multiple, geographically distributed nodes to learn a Deep Learning (DL) model together without sharing their data. Blockchain is becoming a new trend as data protection and privacy are concerns in many sectors. Technology is leading the world and transforming into a global village where everything is accessible and transparent. We have presented a blockchain enabled security model using FL that can generate an enhanced DL model without sharing data and improve privacy through higher security and access rights to data. However, existing FL approaches also have unique security vulnerabilities that malicious actors can exploit and compromise the trained model. The FL method is compared to the other known approaches. Users are more likely to choose the latter option, i.e., providing local but private data to the server and using ML apps, performing ML operations on the devices without benefiting from other users’ data, and preventing direct access to raw data and local training of ML models. FL protects data privacy and reduces data transfer overhead by storing raw data on devices and combining locally computed model updates. We have investigated the feasibility of data and model poisoning attacks under a blockchain-enabled FL system built alongside the Ethereum network and the traditional FL system (without blockchain). This work fills a knowledge gap by proposing a transparent incentive mechanism that can encourage good behavior among participating decentralized nodes and avoid common problems and provides knowledge for the FL security literature by investigating current FL systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference55 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3