Improved LS-SVM Method for Flight Data Fitting of Civil Aircraft Flying at High Plateau

Author:

Chen Nongtian,Sun YouchaoORCID,Wang Zongpeng,Peng Chong

Abstract

High-plateau flight safety is an important research hotspot in the field of civil aviation transportation safety science. Complete and accurate high-plateau flight data are beneficial for effectively assessing and improving the flight status of civil aviation aircrafts, and can play an important role in carrying out high-plateau operation safety risk analysis. Due to various reasons, such as low temperature and low pressure in the harsh environment of high-plateau flights, the abnormality or loss of the quick access recorder (QAR) data affects the flight data processing and analysis results to a certain extent. In order to effectively solve this problem, an improved least squares support vector machines method is proposed. Firstly, the entropy weight method is used to obtain the index weights. Secondly, the principal component analysis method is used for dimensionality reduction. Finally, the data are fitted and repaired by selecting appropriate eigenvalues through multiple tests based on the LS-SVM. In order to verify the effectiveness of this method, the QAR data related to multiple real plateau flights are used for testing and comparing with the improved method for verification. The fitting results show that the error measurement index mean absolute error of the average error accuracy is more than 90%, and the error index value equal coefficient reaches a high fit degree of 0.99, which proves that the improved least squares support vector machines machine learning model can fit and supplement the missing QAR data in the plateau area through historical flight data to effectively meet application needs.

Funder

National Natural Science Foundation of China

Key R&D Program of Sichuan Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. Airworthiness requirement of transportation category aircraft operation on high plateau airports;Xu;Aeronaut. Comput. Tech.,2018

2. Machine learning for aircraft approach time prediction;Ye;Acta Aeronaut. Astronaut. Sin.,2020

3. Military airplane health assessment technique based on data mining of flight parameters;Fang;Acta Aeronaut. Astronaut. Sin.,2020

4. Research on classification of screw locking results based on improved kernel LS-SVM algorithm;Liu;Ind. Instrum. Autom.,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3