Global Sensitivity Analysis of Economic Model Predictive Longitudinal Motion Control of a Battery Electric Vehicle

Author:

Braband MatthiasORCID,Scherer Matthias,Voos HolgerORCID

Abstract

Global warming forces the automotive industry to reduce real driving emissions and thus, its CO2 footprint. Besides maximizing the individual efficiency of powertrain components, there is also energy-saving potential in the choice of driving strategy. Many research works have noted the potential of model predictive control (MPC) methods to reduce energy consumption. However, this results in a complex control system with many parameters that affect the energy efficiency. Thus, an important question remains: how do these partially uncertain (system or controller) parameters influence the energy efficiency? In this article, a global variance-based sensitivity analysis method is used to answer this question. Therefore, a detailed powertrain model controlled by a longitudinal nonlinear MPC (NMPC) is developed and parameterized. Afterwards, a qualitative Morris screening is performed on this model, in order to reduce the parameter set. Subsequently, the remaining parameters are quantified using Generalized Sobol Indices, in order to take the time dependence of physical processes into account. This analysis reveals that the variations in vehicle mass, battery temperature, rolling resistance and auxiliary consumers have the greatest influence on the energy consumption. In contrast, the parameters of the NMPC only account for a maximum of 5% of the output variance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3