Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network

Author:

Gnanavel S.ORCID,Sreekrishna M.ORCID,Mani Vinodhini,Kumaran G.ORCID,Amshavalli R. S.,Alharbi Sadeen,Maashi MashaelORCID,Khalaf Osamah IbrahimORCID,Abdulsahib Ghaida Muttashar,Alghamdi Ans D.ORCID,Aldhyani Theyazn H. H.ORCID

Abstract

Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.

Funder

Research Center of College of Computer and Information Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3