Smart Home: Deep Learning as a Method for Machine Learning in Recognition of Face, Silhouette and Human Activity in the Service of a Safe Home

Author:

Vardakis George,Tsamis George,Koutsaki Eleftheria,Haridimos KondylakisORCID,Papadakis Nikos

Abstract

Despite the general improvement of living conditions and the ways of building buildings, the sense of security in or around them is often not satisfactory for their users, resulting in the search and implementation of increasingly effective protection measures. The insecurity that modern people face every day, especially in urban centers regarding their home security, led computer science to the development of intelligent systems, aiming to mitigate the risks and ultimately lead to the consolidation of the feeling of security. In order to establish security, smart applications were created that turned a house into a Smart and Safe Home. We first present and analyze the deep learning method and emphasize its important contribution to the development of the process for machine learning, both in terms of the development of methods for safety at home, but also in terms of its contribution to other sciences and especially medicine where the results are spectacular. We then analyze in detail the back propagation algorithm in neural networks in both linear and non-linear networks as well as the X-OR problem simulation. Machine learning has a direct and effective application with impressive results in the recognition of human activity and especially in face recognition, which is the most basic condition for choosing the most appropriate method in order to design a smart home. Due to the large amount of data and the large computing capabilities that a system must have in order to meet the needs of a safe, smart home, technologies such as fog and cloud computing are used for both face recognition and recognition of human silhouettes and figures. These smart applications compose the systems that are created mainly through “Deep Learning” methods based on machine learning techniques. Based on the study we have done and present in this work, we believe that with the use of DL technology, the creation of a completely safe house has been achieved to a large extent today, covering an urgent need these days due to the increase in crime.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aplicación móvil para el control de asistencia de docentes universitarios con autenticación biométrica y verificación de geolocalización;Revista Científica de Sistemas e Informática;2024-07-10

2. Enhanced Face Recognition Intelligent System on Smart Home Security and Control with CNN;2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT);2023-11-23

3. Development of a Smart Home Security System Using Facial Recognition Method Through Convolutional Neural Network;2023 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob);2023-10-10

4. Exploring Machine Learning in IoT Smart Home Automation;2023 IEEE 8th International Conference On Software Engineering and Computer Systems (ICSECS);2023-08-25

5. Evaluation of Smart Home Systems and Novel UV-Oriented Solution for Integration, Resilience, Inclusiveness & Sustainability;2022 6th International Conference on Universal Village (UV);2022-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3