Attentive Part-Based Alignment Network for Vehicle Re-Identification

Author:

Liu Yichu,Hu HaifengORCID,Chen DihuORCID

Abstract

Vehicle Re-identification (Re-ID) has become a research hotspot along with the rapid development of video surveillance. Attention mechanisms are utilized in vehicle Re-ID networks but often miss the attention alignment across views. In this paper, we propose a novel Attentive Part-based Alignment Network (APANet) to learn robust, diverse, and discriminative features for vehicle Re-ID. To be specific, in order to enhance the discrimination of part features, two part-level alignment mechanisms are proposed in APANet, consisting of Part-level Orthogonality Loss (POL) and Part-level Attention Alignment Loss (PAAL). Furthermore, POL aims to maximize the diversity of part features via an orthogonal penalty among parts whilst PAAL learns view-invariant features by means of realizing attention alignment in a part-level fashion. Moreover, we propose a Multi-receptive-field Attention (MA) module to adopt an efficient and cost-effective pyramid structure. The pyramid structure is capable of employing more fine-grained and heterogeneous-scale spatial attention information through multi-receptive-field streams. In addition, the improved TriHard loss and Inter-group Feature Centroid Loss (IFCL) function are utilized to optimize both the inter-group and intra-group distance. Extensive experiments demonstrate the superiority of our model over multiple existing state-of-the-art approaches on two popular vehicle Re-ID benchmarks.

Funder

Science and Technology Program of Guangdong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3