Abstract
This paper presents a solution for remote classes where hardware is offered as a service. The infrastructure was based on Raspberry Pi mini computers to which a set of different developments boards were connected. The proposed software architecture allows students to connect to remote resources and interact with them. Moreover, the services monitoring status of remote resources were introduced to facilitate software development and the learning process. Furthermore, live video feedback is available to visually monitor operation of the resources. Finally, a debugging server was deployed allowing us to establish a remote debugging session between a user’s PC and the dev board on the server premises. The solution offers a comprehensive remote service including user management. Safety risks of the Internet-exposed infrastructure and safety precautions were discussed. The presented RemoteLab system allows students of WUST to gain knowledge, practise and realize exercises in scope of academic courses such as robot controllers and advanced robot control. Thanks to advances in remote education and utilized tools, the RemoteLab was designed and deployed, allowing stationary classes to be substituted with remote ones, while maintaining a high level of class knowledge transfer. Up to the present, the system has been utilized by over 100 students who could realize exercises and prepare for classes thanks to 24 h system availability.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献