Receiver Analog Front-End Cascading Transimpedance Amplifier and Continuous-Time Linear Equalizer for Signals of 5 to 30 Gb/s
-
Published:2022-05-12
Issue:10
Volume:11
Page:1546
-
ISSN:2079-9292
-
Container-title:Electronics
-
language:en
-
Short-container-title:Electronics
Author:
Challayya Naidu Pragada Venkata Satya,Lu Chih-Wen
Abstract
A 5–30 Gb/s receiver analog front-end (AFE) cascading transimpedance amplifier (TIA) and continuous-time linear equalizer (CTLE) were implemented using a Taiwan Semiconductor 180 nm process. The system comprises a two-stage differential input pair CTLE, TIA, and a differential termination resistor Rm. A source-degenerated transconductance stage was adopted in the CTLE, and source follower and shunt feedback resistor stages were adopted in the TIA. The proposed CTLE could achieve high frequencies by altering the tail current with fixed degenerate capacitance CS and resistance RS. The proposed AFE achieved high bandwidth, and the use of a feedback resistor Rf and inductor Lf improved its high-frequency performance. Simulation results revealed that the CTLE can compensate for 16 dB of channel loss at a 3 GHz Nyquist frequency and can open closed eyes in a 6 Gb/s non-return-to-zero signal with a bit error rate of 0.16 × 10−12 for a 231 − 1 pseudorandom binary sequence input. The AFE could compensate for 12 dB of channel loss at a 15 GHz Nyquist frequency and can open closed eyes in a 30 Gb/s PAM4 signal from a pseudorandom binary sequence input; it consumed 27 mW of power at 1.8 V.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献