CMOS Analog Filter Design for Very High Frequency Applications

Author:

Sánchez-Gaspariano Luis Abraham,Muñiz-Montero Carlos,Muñoz-Pacheco Jesús ManuelORCID,Sánchez-López CarlosORCID,Gómez-Pavón Luz del CarmenORCID,Luis-Ramos Arnulfo,Bautista-Castillo Alejandro IsraelORCID

Abstract

A design strategy for the synthesis of high-selectivity/low-order analog filters in Complementary Metal-Oxide-Semiconductor (CMOS) technology for very high frequency (VHF) applications is presented. The methodology for the reconstitution of a given transfer function by means of Signal Flow Graphs (SFG) manipulation in canonical form is proposed leading to a fully differential g m -C biquad filter. As a practical example, the design of a notch filter intended to suppress interferers in the lower sideband (400 MHz) of the Medical Implant Communication Service (MICS), in single-poly, 6-metal layers; Mixed-Signal/RF 0.18 µm CMOS technology is realized. To compare the performance of the proposal with some other solution, the design of a 7th order elliptic notch filter based on Frequency Dependent Negative Resistors (FDNRs) was also accomplished. The attained simulation results prove that the proposal is competitive compared to the FDNR solution and some other state-of-the-art filters reported in the literature. The most salient features of the proposed notch biquad include: the selectivity, whose value is comparable to that of a 7th order elliptic approach and some other 3rd order filters; a high-frequency operation without resonators; linearity, with a +15 dBm I I P 3 ; a reduced form factor with a total occupied area of 0.004282 mm2 and mostly a low design complexity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3