Efficient Systolic-Array Redundancy Architecture for Offline/Online Repair

Author:

Cho Keewon,Lee Ingeol,Lim Hyeonchan,Kang Sungho

Abstract

Neural-network computing has revolutionized the field of machine learning. The systolic-array architecture is a widely used architecture for neural-network computing acceleration that was adopted by Google in its Tensor Processing Unit (TPU). To ensure the correct operation of the neural network, the reliability of the systolic-array architecture should be guaranteed. This paper proposes an efficient systolic-array redundancy architecture that is based on systolic-array partitioning and rearranging connections of the systolic-array elements. The proposed architecture allows both offline and online repair with an extended redundancy architecture and programmable fuses and can ensure reliability even in an online situation, for which the previous fault-tolerant schemes have not been considered.

Funder

Samsung

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference17 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Area-Efficient Systolic Array Redundancy Architecture for Reliable AI Accelerator;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2024

2. Saca-FI: A microarchitecture-level fault injection framework for reliability analysis of systolic array based CNN accelerator;Future Generation Computer Systems;2023-10

3. STRAIT: Self-Test and Self-Recovery for AI Accelerator;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-09

4. PULP Fiction No More—Dependable PULP Systems for Space;2023 IEEE European Test Symposium (ETS);2023-05-22

5. Artificial Intelligence Accelerators;Artificial Intelligence and Hardware Accelerators;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3