Abstract
The present paper deals with neural algorithms to learn the singular value decomposition (SVD) of data matrices. The neural algorithms utilized in the present research endeavor were developed by Helmke and Moore (HM) and appear under the form of two continuous-time differential equations over the special orthogonal group of matrices. The purpose of the present paper is to develop and compare different numerical schemes, under the form of two alternating learning rules, to learn the singular value decomposition of large matrices on the basis of the HM learning paradigm. The numerical schemes developed here are both first-order (Euler-like) and second-order (Runge-like). Moreover, a reduced Euler scheme is presented that consists of a single learning rule for one of the factors involved in the SVD. Numerical experiments performed to estimate the optical-flow (which is a component of modern IoT technologies) in real-world video sequences illustrate the features of the novel learning schemes.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献