Optimization of Public Transport Services to Minimize Passengers’ Waiting Times and Maximize Vehicles’ Occupancy Ratios

Author:

Hartmann Tolić IvanaORCID,Nyarko Emmanuel KarloORCID,Ceder Avishai (Avi)

Abstract

Determining the best timetable for vehicles in a public transportation (PT) network is a complex problem, especially because it is just necessary to consider the requirements and satisfaction of passengers as the requirements of transportation companies. In this paper, a model of the PT timetabling problem which takes into consideration the passenger waiting time (PWT) at a station and the vehicle occupancy ratio (VOR) is proposed. The solution aims to minimize PWT and maximize VOR. Due to the large search space of the problem, we use a multiobjective particle swarm optimization (MOPSO) algorithm to arrive at the solution of the problem. The results of the proposed method are compared with similar results from the existing literature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Joint optimization of headway and number of stops for bilateral bus rapid transit;PLOS ONE;2024-03-13

2. CommuteEZY: Optimized Commute Occupancy Monitoring Platform;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

3. Bi-objective Study of Public Transport Operation in Smart Cities to Minimize On-Board Passenger Traveling Time and Stop Passenger Delay;Internet of Everything for Smart City and Smart Healthcare Applications;2023-08-22

4. On Safety of Passengers Entering a Bus Rapid Transit System from Scheduled Stops;2023 IEEE Conference on Control Technology and Applications (CCTA);2023-08-16

5. Model predictive control of bus platoons in a circular route considering dispatching, holding and boarding limits;2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC);2022-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3