Computationally Efficient Soft Detection Schemes for Coded Massive MIMO Systems

Author:

Zhang Meixiang,Zhang Zhi,Chan SatyaORCID,Kim SooyoungORCID

Abstract

This paper presents a computationally efficient soft detection scheme for massive multiple-input multiple-output (MIMO) systems. The proposed scheme adopts joint iterative detection and decoding (JIDD) methods for their capacity limiting performances. In addition, the minimum mean square error parallel interference cancellation (MMSE-PIC)-based detection scheme is used for soft information exchange. We propose a number of techniques to reduce the computational complexity, while keeping almost the same performance as the conventional ones. First, a technique is proposed to approximate the Gram matrix to a constant valued diagonal matrix. This proposal can lead to elimination of complex matrix inversion process and multiple layer dependent estimations, resulting in huge complexity reduction. Second, compact equations to estimate soft-symbol values for M-ary (quadrature amplitude modulation) QAM are derived. From the investigation example of 2 8 -QAM in this paper, this proposal showed more than two orders of less computations compared to the conventional scheme. The simulation results demonstrate that the proposed method can achieve approximating performance to the conventional method with a largely reduced computational complexity.

Funder

National Research Foundation of Korea

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Compact Soft Symbol Estimation for Iterative MIMO Detection;IEEE Wireless Communications Letters;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3