A Multi-Branch DQN-Based Transponder Resource Allocation Approach for Satellite Communications

Author:

Sun Wenyu1ORCID,Zhang Weijia1,Ma Ning1,Jia Min2

Affiliation:

1. The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China

2. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China

Abstract

In light of the increasing scarcity of frequency spectrum resources for satellite communication systems based on the transparent transponder, fast and efficient satellite resource allocation algorithms have become key to improving the overall resource occupancy. In this paper, we propose a reinforcement learning-based Multi-Branch Deep Q-Network (MBDQN), which introduces TL-Branch and RP-Branch to extract features of satellite resource pool state and task state simultaneously, and Value-Branch to calculate the action-value function. On the one hand, MBDQN improves the average resource occupancy performance (AOP) through the selection of multiple actions, including task selection and resource priority actions. On the other hand, the trained MBDQN is more suitable for online deployment and significantly reduces the runtime overhead due to the fact that MBDQN does not need iteration in the test phase. Experiments on both non-zero waste and zero waste datasets demonstrate that our proposed method achieves superior performance compared to the greedy or heuristic methods on the generated task datasets.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Outstanding Young Scholars of Heilongjiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3