Two-Stage Cascaded CNN Model for 3D Mitochondria EM Segmentation

Author:

Guo Jing-Ming12ORCID,Seshathiri Sankarasrinivasan12,Liu Jia-Hao12,Hsu Wei-Wen3ORCID

Affiliation:

1. Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan

2. Advanced Intelligent Image and Vision Technology Research Center, National Taiwan University of Science and Technology, Taipei 106335, Taiwan

3. Department of Computer Science and Information Engineering, National Taitung University, Taitung 950952, Taiwan

Abstract

Mitochondria are the organelles that generate energy for the cells. Many studies have suggested that mitochondrial dysfunction or impairment may be related to cancer and other neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Therefore, morphologically detailed alterations in mitochondria and 3D reconstruction of mitochondria are highly demanded research problems in the performance of clinical diagnosis. Nevertheless, manual mitochondria segmentation over 3D electron microscopy volumes is not a trivial task. This study proposes a two-stage cascaded CNN architecture to achieve automated 3D mitochondria segmentation, combining the merits of top-down and bottom-up approaches. For top-down approaches, the segmentation is conducted on objects’ localization so that the delineations of objects’ contours can be more precise. However, the combinations of 2D segmentation from the top-down approaches are inadequate to perform proper 3D segmentation without the information on connectivity among frames. On the other hand, the bottom-up approach finds coherent groups of pixels and takes the information of 3D connectivity into account in segmentation to avoid the drawbacks of the 2D top-down approach. However, many small areas that share similar pixel properties with mitochondria become false positives due to insufficient information on objects’ localization. In the proposed method, the detection of mitochondria is carried out with multi-slice fusion in the first stage, forming the segmentation cues. Subsequently, the second stage is to perform 3D CNN segmentation that learns the pixel properties and the information of 3D connectivity under the supervision of cues from the detection stage. Experimental results show that the proposed structure alleviates the problems in both the top-down and bottom-up approaches, which significantly accomplishes better performance in segmentation and expedites clinical analysis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3