Condition-Based Maintenance of an Anaerobic Reactor Using Artificial Intelligence

Author:

Juárez-Barojas Isaias1,Posada-Gómez Rubén1ORCID,Alvarado-Lassman Alejandro1ORCID,Rodríguez-Jarquín José Pastor1

Affiliation:

1. División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, Orizaba 94320, Mexico

Abstract

This paper proposes a condition-based maintenance system based on artificial intelligence for an online monitoring system of the support bed expansion in a 30-liter pilot-scale inverse fluidized bed reactor (IFBR). The main scope is to achieve a condition-based maintenance strategy using a single-level sensor for a biofilm inverse fluidizing bed as source for virtual sensors. The implementation of an artificial neural network was performed on an embedded electronic system (Raspberry Pi 4), both working together in real time. The signals estimated by the neural network are compared against the signals measured by the hardware sensors and, in case of detecting a failure in the physical measurement system, the artificial intelligence-based system then uses the signal estimated by the artificial neural network to maintain the correct operation of the IFBR. This system uses an artificial neural network to estimate the COD concentration of the effluent and the biogas production flow of a bioreactor, from the measurement of pH, the COD concentration of the influent, the inflow to the bioreactor and the signal coming from each of the conductivity sensors installed inside the reactor, which provide information about support media expansion in a pilot-scale inverse fluidized bed reactor. In addition, a fuzzy PI controller is presented, which was implemented in a Raspberry Pi electronic card, to regulate the COD concentration in the effluent of the bioreactor used as a case study.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3