DOA Estimation Using Deep Neural Network with Angular Sliding Window

Author:

Li Yang1234,Huang Zanhu134,Liang Can134ORCID,Zhang Liang13ORCID,Wang Yanhua12345,Wang Junfu6,Zhang Yi6,Lv Hongfen6

Affiliation:

1. Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China

3. Electromagnetic Sensing Research Center of CEMEE State Key Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

4. Beijing Key Laboratory of Embedded Real-Time Information Processing Technology, Beijing 100081, China

5. Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China

6. Beijing Racobit Electronic Information Technology Co., Ltd., Beijing 100081, China

Abstract

Deep neural network (DNN) has shown great potential in direction-of-arrival (DOA) estimation. In high dynamic signal-to-noise (SNR) scenarios, the estimation accuracy of the weaker sources may degrade significantly due to insufficient training samples. This paper proposes a deep neural network framework with sliding window operation. The whole field-of-view (FOV) is divided into a series of sub-regions via sliding windows. Each sub-region is assumed to contain one source at most. Thus, the single-source data can be used to train all the networks, alleviating the need for the training samples and the prior information on the number of sources. A detector network and an estimator network are followed for each sub-region, enabling high estimation accuracy and the number of sources. Simulation and real data experiment results show that the proposed method can achieve excellent DOA and source number estimation performance. Specifically, in the real data experiment, the results show that the RMSE of the proposed method reaches 0.071, which is at least 0.03 lower than FFT, MUSIC, ESPRIT, and a deep learning method namely deep convolutional network (DCN), cannot estimate the lower SNR source in high dynamic SNR scenarios.

Funder

National Key R&D Program of China

China Postdoctoral Science Foundation

Natural Science Foundation of Chongqing, China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3