Comparative Analysis of Traffic-Reduction Techniques for Seamless CAN-Based In-Vehicle Network Systems

Author:

Hoang Duc N. M.1ORCID,Park Sang Yoon1ORCID,Rhee Jong Myung2

Affiliation:

1. Department of Electronic Engineering, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea

2. Department of Information and Communications Engineering, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea

Abstract

Due to the benefits of better bandwidth and reliability, the automotive industry is moving towards Ethernet-based in-vehicle network (IVN) systems as the number of onboard electronic control units has increased. Considering that before long the well-known controller area network (CAN) will still be considered a standard protocol, our earlier work introduced a high-availability seamless redundancy (HSR)-based Ethernet network architecture that provides IVNs with fault tolerance, called seamless CAN. However, HSR is known for its redundant traffic generated for fault tolerance, which is a disadvantage in bandwidth-limited IVN systems. Therefore, in this paper, we propose a traffic-effective architecture for seamless CAN-based networks. We compared the proficiency of different traffic-reduction approaches as they were applied to our proposed architecture. Extensive simulation results showed that our proposed solution could reduce up to 54% of the total network traffic compared to a conventional architecture while still being able to guarantee a high level of fault tolerance.

Funder

National Research Foundation of Korea

Korean government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3