Dynamically Adjusted and Peripheral Visualization of Reverse Optical Flow for VR Sickness Reduction

Author:

Kim Songmin1,Kim Gerard J.1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea

Abstract

Sickness is a major obstacle in the wide adoption of virtual reality (VR). Providing low-resolution peripheral “countervection” visualization could mitigate VR sickness. Herein, we present an extension/improvement to this work, in which the reverse optical flow of the scene features is mixed in, and the extent of the periphery is dynamically adjusted simultaneously. We comparatively evaluated the effects of our extension versus the two notable sickness reduction techniques, (1) the original peripheral countervection flow using the simple stripe pattern (with a fixed field of view and peripheral extent) and (2) the dynamic field of view adjustment (with no added visualization). The experimental results indicated that the proposed extension exhibits competitive or better sickness reduction effects and less user-perceived content intrusion, distraction, and breaks in immersion/presence. Furthermore, we tested the comparative effect of visualizing the reverse optical flow only in the lower visual periphery, which further reduced the content intrusion and lowered the sense of immersion and presence. The test indicated that using just the low visual periphery could achieve a comparable level of sickness reduction with significantly less computational effort, making it suitable for mobile applications.

Funder

National Research Foundation of Korea

Institute for Information & Communication Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Scene Adjustment Mechanism for Manipulating User Experience in VR;2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2024-03-16

2. What Causes the Dizziness: A Cybersickness Study in VR Environment;2023 IEEE Smart World Congress (SWC);2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3