Machine Learning-Inspired Hybrid Precoding for HAP Massive MIMO Systems with Limited RF Chains

Author:

Hassan Shabih ul1ORCID,Mir Talha2,Alamri Sultan3ORCID,Khan Naseer Ahmed4ORCID,Mir Usama5

Affiliation:

1. Information and Communication, University of Science and Technology of China, Hefei 230052, China

2. Department of Electronic Engineering, Baluchistan University of IT, Engineering and Management Sciences Pakistan (BUITEMS), Quetta 87300, Pakistan

3. College of Computing and Informatics, Saudi Electronic University, Riyadh 13316, Saudi Arabia

4. School of Computer Science, Northwestern Polytechnical University, Xi’an 710060, China

5. School of Computer Science, University of Windsor, Windsor, ON N9B 3P4, Canada

Abstract

Energy efficiency (EE) is the main target of wireless communication nowadays. In this paper, we investigate hybrid precoding (HP) and massive multiple-input multiple-output (MIMO) systems for a high-altitude platform (HAP). The HAP is an emerging solution operating in the stratosphere at an amplitude of up to 20–40 km to provide communication facilities that can achieve the best features of both terrestrial and satellite systems. The existing hybrid beamforming solution on a HAP requires a large number of high-resolution phase shifters (PSs) to realize analog beamforming and radio frequency (RF) chains associated with each antenna and achieve better performance. This leads to enormous power consumption, high costs, and high hardware complexity. To address such issues, one possible solution that has to be tweaked is to minimize the number of PSs and RFs or reduce their power consumption. This study proposes an HP sub-connected low-resolution bit PSs to address these challenges while lowering overall power consumption and achieving EE. To significantly reduce the RF chain in a massive MIMO system, HP is a suitable solution. This study further examined adaptive cross-entropy (ACE), a machine learning-based optimization that optimizes the achievable sum rate and energy efficiency in the Rician fading channel for HAP massive MIMO systems. ACE randomly generates several candidate solutions according to the probability distribution (PD) of the elements in HP. According to their sum rate, it adaptively weights these candidates’ HP and improves the PD in HP systems by minimizing the cross-entropy. Furthermore, this work suggests energy consumption analysis performance evaluation to unveil the fact that the proposed technique based on a sub-connected low-bit PS architecture can achieve near-optimum EE and sum rates compared with the previously reported methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3