Dynamic Beacon Distribution Mechanism for Internet of Vehicles: An Analytical Study
-
Published:2023-02-06
Issue:4
Volume:12
Page:818
-
ISSN:2079-9292
-
Container-title:Electronics
-
language:en
-
Short-container-title:Electronics
Author:
Ouladdjedid Lakhdar Kamel1ORCID, Brik Bouziane2ORCID
Affiliation:
1. Laboratoire d’Informatique et de Mathematiques, Amar Thelidji University of Laghouat, Laghouat 03000, Algeria 2. DRIVE Lab, University of Burgundy, 58000 Nevers, France
Abstract
In the last decade, with the arrival of the 5G communication technology and the increasing numbers of vehicles being connected to the internet, conventional vehicle ad-hoc networks (VANETs) are evolving towards the internet of vehicles (IoV), which makes the co-existence of IEEE 802.11p and 5G-based technologies very important for the design of a heterogeneous IoV system that takes advantage of both. The IEEE 802.11p standard is still the best candidate to support direct communications for safety critical services. In fact, both the ETSI ITS-G5 and the IEEE 1609 standard families adopt the IEEE 802.11p standard as a medium access control (MAC) mechanism, and they require vehicles to exchange periodic awareness messages to avoid dangerous situations. When the density of vehicles increases, the MAC layer will suffer from radio channel congestion problems, and this may affect the various VANET applications, especially safety applications. Therefore, the decentralized congestion control (DCC) mechanism has been specified by ETSI to mitigate the channel congestion; this was achieved by adapting the transmission parameters, such as the transmit power and data-rate. However, many research studies have demonstrated limitations and a low performance of DCC, especially when the channel load is extremely high. To deal with this, in this paper, we investigate a new promising technique, called the transmission timing control (TTC), to control the channel load for periodic cooperative awareness. It consists of spreading the transmissions over time in order to avoid contention on the transmission channel. The objective of the paper is to propose an analytical study to calculate the probability of successful transmission using TTC. The demonstrated results show the efficiency of our timing control-enabled scheme to deal with the channel load on top of different conditions.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference79 articles.
1. An overview of Internet of vehicles;Yang;China Commun.,2014 2. Duo, R., Wu, C., Yoshinaga, T., Zhang, J., and Ji, Y. (2020). SDN-based handover scheme in cellular/IEEE 802.11 p hybrid vehicular networks. Sensors, 20. 3. Wu, Q., Xia, S., Fan, Q., and Li, Z. (2019). Performance analysis of IEEE 802.11 p for continuous backoff freezing in IoV. Electronics, 8. 4. Baiocchi, A., Turcanu, I., Lyamin, N., Sjöberg, K., and Vinel, A. (2021, January 17–21). Age of Information in IEEE 802.11 p. Proceedings of the 17th IFIP/IEEE International Symposium on Integrated Network Management (IM): ITAVT Workshop, Bordeaux, France. 5. Performance evaluation of IEEE 802.11 p, LTE and 5G in connected vehicles for cooperative awareness;Tahir;Eng. Rep.,2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|