Effective and Privacy-Preserving Estimation of the Density Distribution of LBS Users under Geo-Indistinguishability

Author:

Kim Jongwook1ORCID,Lim Byungjin1

Affiliation:

1. Department of Computer Science, Sangmyung University, Seoul 03016, Republic of Korea

Abstract

With the widespread use of mobile devices, location-based services (LBSs), which provide useful services adjusted to users’ locations, have become indispensable to our daily lives. However, along with several benefits, LBSs also create problems for users because to use LBSs, users are required to disclose their sensitive location information to the service providers. Hence, several studies have focused on protecting the location privacy of individual users when using LBSs. Geo-indistinguishability (Geo-I), which is based on the well-known differential privacy, has recently emerged as a de-facto privacy definition for the protection of location data in LBSs. However, LBS providers require aggregate statistics, such as user density distribution, for the purpose of improving their service quality, and deriving them accurately from the location dataset received from users is difficult owing to the data perturbation of Geo-I. Thus, in this study, we investigated two different approaches, the expectation-maximization (EM) algorithm and the deep learning based approaches, with the aim of precisely computing the density distribution of LBS users while preserving the privacy of location datasets. The evaluation results show that the deep learning approach significantly outperforms other alternatives at all privacy protection levels. Furthermore, when a low level of privacy protection is sufficient, the approach based on the EM algorithm shows performance results similar to those of the deep learning solution. Thus, it can be used instead of a deep learning approach, particularly when training datasets are not available.

Funder

Sangmyung University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3