Benchmarking a Many-Core Neuromorphic Platform With an MPI-Based DNA Sequence Matching Algorithm

Author:

Urgese GianvitoORCID,Barchi FrancescoORCID,Parisi EmanueleORCID,Forno EvelinaORCID,Acquaviva AndreaORCID,Macii EnricoORCID

Abstract

SpiNNaker is a neuromorphic globally asynchronous locally synchronous (GALS) multi-core architecture designed for simulating a spiking neural network (SNN) in real-time. Several studies have shown that neuromorphic platforms allow flexible and efficient simulations of SNN by exploiting the efficient communication infrastructure optimised for transmitting small packets across the many cores of the platform. However, the effectiveness of neuromorphic platforms in executing massively parallel general-purpose algorithms, while promising, is still to be explored. In this paper, we present an implementation of a parallel DNA sequence matching algorithm implemented by using the MPI programming paradigm ported to the SpiNNaker platform. In our implementation, all cores available in the board are configured for executing in parallel an optimised version of the Boyer-Moore (BM) algorithm. Exploiting this application, we benchmarked the SpiNNaker platform in terms of scalability and synchronisation latency. Experimental results indicate that the SpiNNaker parallel architecture allows a linear performance increase with the number of used cores and shows better scalability compared to a general-purpose multi-core computing platform.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human activity recognition: suitability of a neuromorphic approach for on-edge AIoT applications;Neuromorphic Computing and Engineering;2022-02-07

2. Configuring an Embedded Neuromorphic Coprocessor Using a RISC-V Chip for Enabling Edge Computing Applications;2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2021-12

3. PageRank Implemented with the MPI Paradigm Running on a Many-Core Neuromorphic Platform;Journal of Low Power Electronics and Applications;2021-05-28

4. Making the Most of Scarce Input Data in Deep Learning-based Source Code Classification for Heterogeneous Device Mapping;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3