Router-integrated Cache Hierarchy Design for Highly Parallel Computing in Efficient CMP Systems

Author:

Zhao ,Jia ,Watanabe

Abstract

In current Chip Multi-Processor (CMP) systems, data sharing existing in cache hierarchy acts as a critical issue which costs plenty of clock cycles for maintaining data coherence. Along with the integrated core number increasing, the only shared cache serves too many processing threads to maintain sharing data efficiently. In this work, an enhanced router network is integrated within the private cache level for fast interconnecting sharing data accesses existing in different threads. All sharing data in private cache level can be classified into seven access types by experimental pattern analysis. Then, both shared accesses and thread-crossed accesses can be rapidly detected and dealt with in the proposed router network. As a result, the access latency of private cache is decreased, and a conventional coherence traffic problem is alleviated. The process in the proposed path is composed of three steps. Firstly, the target accesses can be detected by exploring in the router network. Then, the proposed replacement logic can handle those accesses for maintaining data coherence. Finally, those accesses are delivered in the proposed data deliverer. Thus, the harmful data sharing accesses are solved within the first chip layer in 3D-IC structure. The proposed system is also implemented into a cycle-precise simulation platform, and experimental results illustrate that our model can improve the Instructions Per Cycle (IPC) of on-chip execution by maximum 31.85 percent, while energy consumption can be saved by about 17.61 percent compared to the base system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3