An Ultra-Wideband Bandpass Filter with a Notch Band and Wide Upper Bandstop Performances

Author:

Weng Min-Hang,Hsu Che-Wei,Lan Siang-Wen,Yang Ru-Yuan

Abstract

This paper presents an ultra-wideband bandpass filter (UWB-BPF) with a notch band and a wide upper stopband. Two pairs of half-wavelength high-impedance line resonators tightly and strongly coupled to the input/output lines are used to provide the wideband responses. The first UWB responses of 3.4–5.0 GHz and the second UWB of 6.0–10.0 GHz are designed independently first and then combined together for the application of a direct-sequence ultra-wideband bandpass (DS-UWB) system. Without using any extra bandstop structure, a notch band at 5.2 GHz can be obtained. The fabricated UWB-BPF with a compact circuit size exhibits good passband performances including insertion losses of 1 ± 0.3 and 2 ± 0.4 dB for first and second passbands, respectively, a high isolation at 5.2 GHz with an attenuation level of 22.7 dB, and wide upper stopband responses from 11 GHz to 19 GHz, simultaneously. The measured results also exhibit good agreement with the simulated results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Band Pass Filter for Satellite Communications Using CSRR Technique;Proceedings of the 6th International Conference on Communications and Cyber Physical Engineering;2024

2. Quasistatic Resonators Based Triple-Mode Notched Microstrip Bandpass Filter;Radioengineering;2023-04

3. Design, Modeling, and Implementation of Dual Notched UWB Bandpass Filter Employing Rectangular Stubs and Embedded L-Shaped Structure;Fractal and Fractional;2023-01-23

4. Notch UWB Filter Based on Four-mode Resonator;2022 IEEE Conference on Antenna Measurements and Applications (CAMA);2022-12-14

5. Design of a novel stub loaded asymmetric rectangular ring resonator based ultra-wide notched-band bandpass filter;Journal of Electromagnetic Waves and Applications;2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3