A Dual-Mode InGaP/GaAs HBT Power Amplifier Using a Low-Loss Parallel Power-Combining Transformer with IMD3 Cancellation Method

Author:

Oh KyutaekORCID,Ahn Hyunjin,Nam IlkuORCID,Lee Hui Dong,Park Bonghyuk,Lee OckgooORCID

Abstract

A dual mode InGaP/GaAs heterojunction bipolar transistor (HBT) power amplifier (PA) using a parallel power-combining transformer (PCT) is presented herein. A low loss transformer is implemented on a printed circuit board (PCB) to improve the passive efficiency of a PCT. Dual-mode operation is applied to reduce the current consumption at a low power level. In the low-power (LP) mode, one of the individual amplifiers is turned off to reduce the current consumption. Additionally, a third-order intermodulation distortion (IMD3) cancellation method using a PCT combiner is proposed to improve linearity performance. Nonlinear IMD3 components from each amplifier cancel each other out through magnetic coupling in the secondary winding of the PCT. The implemented PA achieves a saturated output power of 33.8 dBm and a peak power-added efficiency (PAE) of 54.5% at 0.91 GHz with a 5-V power supply. An average output power of 25.2 dBm with an adjacent channel leakage ratio (ACLR) of −42 dBc is delivered when the PA is tested with an orthogonal frequency division multiplexing (OFDM) 64-quadrature amplitude modulated (64-QAM) signal with a bandwidth of 10 MHz and peak-to-average power ratio (PAPR) of 7.8 dB. When compared with the high-power (HP) mode operation, the LP mode operation could save 48% of the current consumption at an average output power of 10.4 dBm.

Funder

The National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3