The Dimension of Phaseless Near-Field Data by Asymptotic Investigation of the Lifting Operator

Author:

Pierri RoccoORCID,Leone GiovanniORCID,Moretta RaffaeleORCID

Abstract

In this paper, the question of evaluating the dimension of data space in an inverse source problem from near-field phaseless data is addressed. The study is developed for a 2D scalar geometry made up by a magnetic current strip whose square magnitude of the radiated field is observed in near non-reactive zone on multiple lines parallel to the source. With the aim of estimating the dimension of data space, at first, the lifting technique is exploited to recast the quadratic model as a linear one. After, the singular values decomposition of such linear operator is introduced. Finally, the dimension of data space is evaluated by quantifying the number of “relevant” singular values. In the last part of the article, some numerical simulations that corroborate the analytical estimation of data space dimension are shown.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diagnostics of conformal arrays by phaseless data and non-uniform sampling;2023 IEEE Conference on Antenna Measurements and Applications (CAMA);2023-11-15

2. Verification of optimal discretization in multi-plane phaseless diagnostics;AEU - International Journal of Electronics and Communications;2023-10

3. Optimal Field Sampling of Arc Sources via Asymptotic Study of the Radiation Operator;Electronics;2022-01-14

4. Dimension and Sampling of the Near-Field and Its Intensity Over Curves;IEEE Open Journal of Antennas and Propagation;2022

5. An efficient sampling scheme in phaseless near-field techniques;2021 IEEE Conference on Antenna Measurements & Applications (CAMA);2021-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3