Development of Air Conditioner Robot Prototype That Follows Humans in Outdoor Applications

Author:

Chaari Mohamed ZiedORCID,Abdelfatah Mohamed,Loreno Christopher,Al-Rahimi Rashid

Abstract

According to Robert McSweeney, in light of a new study: “Conditions in the GCC could become so hot and humid in the coming years that staying outside for more than six hours will become difficult”. He is a climate analyst at CARBON BRIEF, a nonprofit temperature and climate analysis group. He also states that changes there can help give us an idea of what the rest of the world can expect if we do not reduce the emissions that pollute homes and factories. Because of the high temperatures in GCC countries, the effect of heat stress is very high there, which discourages shoppers and pedestrians from shopping in the open area due to the physical exertion and high risks faced by people and workers. Heat stress peaks in most Arab Gulf countries from 11:00 a.m. to 4:00 p.m. during the summer season. Heat stress is increasingly an obstacle to economic efficiency in these countries. This work designs and develops a robot that tracks shoppers and provides a cool stream of air directly around them during shopping in open areas to reduce the effect of heat stress. The robot enables us to cool the temperature around customers in the market to increase comfort. In this project, a robot was designed and manufactured to track a specific person and cool the air around him through a cool stream of air generated by the air conditioner installed inside the robot. We used a Raspberry Pi camera sensor to detect the target person and interact with a single-board computer (Raspberry Pi 3) to accomplish this design and the prototype. Raspberry Pi controls the air-conditioning robot to follow the movement of the target person. We used image processing to discover the target shopper, the control system, and then guide the bot. In the meantime, the robot must also bypass any potential obstacles that could prevent its movement and cause a collision. We made a highly efficient design that can synchronize between the software algorithm and the mechanical platform of the robot. This work is merely the combination of a cool stream of air and a robot that follows a human.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review on applications of Raspberry Pi;Computer Science Review;2024-05

2. Design of Intelligent Supermarket Service Robot Based on Raspberry Pi;2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA);2023-05-26

3. Drone Shadow Cloud: A New Concept to Protect Individuals from Danger Sun Exposure in GCC Countries;Artificial Intelligence for Robotics and Autonomous Systems Applications;2023

4. UV-C Disinfection Robotic;2022 International Electronics Symposium (IES);2022-08-09

5. HUMAN FACTORS ENGINEERING ON THE EDGE OF INDUSTRY 4.0: ANALYSIS FOR IOT-AIDED TECHNOLOGIES;Endüstri Mühendisliği;2022-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3