Abstract
Low power wide area networks (LPWAN) are comprised of small devices having restricted processing resources and limited energy budget. These devices are connected with each other using communication protocols. Considering their available resources, these devices can be used in a number of different Internet of Things (IoT) applications. Another interesting paradigm is machine learning, which can also be integrated with LPWAN technology to embed intelligence into these IoT applications. These machine learning-based applications combine intelligence with LPWAN and prove to be a useful tool. One such IoT application is in the medical field, where they can be used to provide multiple services. In the scenario of the COVID-19 pandemic, the importance of LPWAN-based medical services has gained particular attention. This article describes various COVID-19-related healthcare services, using the the applications of machine learning and LPWAN in improving the medical domain during the current COVID-19 pandemic. We validate our idea with the help of a case study that describes a way to reduce the spread of any pandemic using LPWAN technology and machine learning. The case study compares k-Nearest Neighbors (KNN) and trust-based algorithms for mitigating the flow of virus spread. The simulation results show the effectiveness of KNN for curtailing the COVID-19 spread.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献