Abstract
This paper presents a novel design of a wideband circular polarization 2 × 2 microstrip antenna array working at Ka-band frequencies, from 27.5 to 31 GHz. This module is highly integrable with new silicon beamformer chips, creating a unit cell that can be part of a large electronically steerable antenna for compact, ultra-low-profile, Satcom-on-the-move (SOTM) platforms. A multi-layer structure fabricated in standard printed circuit board (PCB) technology with high-yield substrates has been used. The radiating elements consist of double-stacked circular patches housed in a cavity and fed by H-shaped aperture coupling. It achieves a bandwidth of 16.5 % with a wide beam-width of 95° in the desired band, which is necessary for wide scanning angles in a large phased array. In the 2 × 2 unit cell, the antenna elements are distributed by means of a sequential rotation technique where the separation between two of them is 5.3 mm in the XY-plane. Broadside beam-widths ranging from 53.4° at 27.5 GHz to 42.1° at 31 GHz are achieved, with boresight directivities from 10.7 to 12.9 dBi, respectively, in both the RHCP and LHCP polarization. Moreover, mutual coupling levels below −20 dB and an axial ratio less than 3 dB in the whole band guarantee a good circular polarization purity.
Funder
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference31 articles.
1. Electronic beam-scanning technology for small satellite communication systems and their future development;Safavi-Naeini,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献