Modeling and Prediction of Daily Traffic Patterns—WASK and SIX Case Study

Author:

Goścień RóżaORCID,Knapińska AleksandraORCID,Włodarczyk AdamORCID

Abstract

The paper studies efficient modeling and prediction of daily traffic patterns in transport telecommunication networks. The investigation is carried out using two historical datasets, namely WASK and SIX, which collect flows from edge nodes of two networks of different size. WASK is a novel dataset introduced and analyzed for the first time in this paper, while SIX is a well-known source of network flows. For the considered datasets, the paper proposes traffic modeling and prediction methods. For traffic modeling, the Fourier Transform is applied. For traffic prediction, two approaches are proposed—modeling-based (the forecasting model is generated based on historical traffic models) and machine learning-based (network traffic is handled as a data stream where chunk-based regression methods are applied for forecasting). Then, extensive simulations are performed to verify efficiency of the approaches and their comparison. The proposed modeling method revealed high efficiency especially for the SIX dataset, where the average error was lower than 0.1%. The efficiency of two forecasting approaches differs with datasets–modeling-based methods achieved lower errors for SIX while machine learning-based for WASK. The average prediction error for SIX reached 3.36% while forecasting for WASK turned out extremely challenging.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference49 articles.

1. Why the Arpanet Was Built

2. Cisco Annual Internet Report 2018–2023 White Paperhttps://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

3. An Overview on Application of Machine Learning Techniques in Optical Networks

4. Distance-Adaptive Transmission in Cloud-Ready Elastic Optical Networks

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3