Abstract
The distinction of secondary particles in extensive air showers, specifically muons and electrons, is one of the requirements to perform a good measurement of the composition of primary cosmic rays. We describe two methods for pulse shape detection and discrimination of muons and electrons implemented on FPGA. One uses an artificial neural network (ANN) algorithm; the other exploits a correlation approach based on finite impulse response (FIR) filters. The novel hls4ml package is used to build the ANN inference model. Both methods were implemented and tested on Xilinx FPGA System on Chip (SoC) devices: ZU9EG Zynq UltraScale+ and ZC7Z020 Zynq. The data set used for the analysis was captured with a data acquisition system on an experimental site based on a water Cherenkov detector. A comparison of the accuracy of the detection, resources utilization and power consumption of both methods is presented. The results show an overall accuracy on particle discrimination of 96.62% for the ANN and 92.50% for the FIR-based correlation, with execution times of 848 ns and 752 ns, respectively.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献