Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors Based on FPGA/SoC

Author:

Garcia Luis GuillermoORCID,Molina Romina SoledadORCID,Crespo Maria LizORCID,Carrato Sergio,Ramponi GiovanniORCID,Cicuttin Andres,Morales Ivan Rene,Perez Hector

Abstract

The distinction of secondary particles in extensive air showers, specifically muons and electrons, is one of the requirements to perform a good measurement of the composition of primary cosmic rays. We describe two methods for pulse shape detection and discrimination of muons and electrons implemented on FPGA. One uses an artificial neural network (ANN) algorithm; the other exploits a correlation approach based on finite impulse response (FIR) filters. The novel hls4ml package is used to build the ANN inference model. Both methods were implemented and tested on Xilinx FPGA System on Chip (SoC) devices: ZU9EG Zynq UltraScale+ and ZC7Z020 Zynq. The data set used for the analysis was captured with a data acquisition system on an experimental site based on a water Cherenkov detector. A comparison of the accuracy of the detection, resources utilization and power consumption of both methods is presented. The results show an overall accuracy on particle discrimination of 96.62% for the ANN and 92.50% for the FIR-based correlation, with execution times of 848 ns and 752 ns, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gamma/neutron classification with SiPM CLYC detectors using frequency-domain analysis for embedded real-time applications;Nuclear Engineering and Technology;2024-02

2. Restoring original signals from pile-up using deep learning;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-10

3. Noise signal identification in time projection chamber data using deep learning model;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-03

4. A Simplified Correlation Index for Fast Real-Time Pulse Shape Recognition;Sensors;2022-10-11

5. Compression of NN-Based Pulse-Shape Discriminators in Front-End Electronics for Particle Detection;Lecture Notes in Electrical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3