Sigmoidal NMFD: Convolutional NMF with Saturating Activations for Drum Mixture Decomposition

Author:

Vande Veire LenORCID,De Boom CedricORCID,De Bie TijlORCID

Abstract

In many types of music, percussion plays an essential role to establish the rhythm and the groove of the music. Algorithms that can decompose the percussive signal into its constituent components would therefore be very useful, as they would enable many analytical and creative applications. This paper describes a method for the unsupervised decomposition of percussive recordings, building on the non-negative matrix factor deconvolution (NMFD) algorithm. Given a percussive music recording, NMFD discovers a dictionary of time-varying spectral templates and corresponding activation functions, representing its constituent sounds and their positions in the mix. We observe, however, that the activation functions discovered using NMFD do not show the expected impulse-like behavior for percussive instruments. We therefore enforce this behavior by specifying that the activations should take on binary values: either an instrument is hit, or it is not. To this end, we rewrite the activations as the output of a sigmoidal function, multiplied with a per-component amplitude factor. We furthermore define a regularization term that biases the decomposition to solutions with saturated activations, leading to the desired binary behavior. We evaluate several optimization strategies and techniques that are designed to avoid poor local minima. We show that incentivizing the activations to be binary indeed leads to the desired impulse-like behavior, and that the resulting components are better separated, leading to more interpretable decompositions.

Funder

Fonds Wetenschappelijk Onderzoek

Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward deep drum source separation;Pattern Recognition Letters;2024-07

2. Exploring the Integration and Innovation Path of Chinese Traditional Music Culture in Popular Percussion Education in Colleges and Universities;Applied Mathematics and Nonlinear Sciences;2024-01-01

3. Temporal Analysis;An Introduction to Audio Content Analysis;2022-10-25

4. Intelligent Audio Signal Processing – Do We Still Need Annotated Datasets?;Intelligent Information and Database Systems;2022

5. Machine Learning Applied to Music/Audio Signal Processing;Electronics;2021-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3