Abstract
This paper proposes a new framework for multi-area economic dispatch (MAED) in which the cost associated with the reliability consideration is taken into account together with the common operational and emission costs using expected energy not supplied (EENS) index. To improve the reliability level, the spinning reserve capacity is considered in the model as well. Furthermore, the MAED optimization problem and non-smooth cost functions are taken into account as well as other technical limitations such as tie-line capacity restriction, ramp rate limits, and prohibited operating zones at the microgrid. Considering all the above practical issues increases the complexity in terms of optimization, which, in turn, necessitates the use of a powerful optimization tool. A new successful algorithm inspired by phasor theory in mathematics, called phasor particle swarm optimization (PPSO), is used in this paper to address this problem. In PPSO, the particles’ update rules are driven by phase angles to essentially ensure a spread of variants across the population so that exploitation and exploration can be balanced. The optimal results obtained via simulations confirmed the capability of the proposed PPSO algorithm to find suitable optimal solutions for the proposed model.
Funder
Universiti Teknologi Malaysia
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献