Tilted Beam Fabry–Perot Antenna with Enhanced Gain and Broadband Low Backscattering

Author:

Umair Hassan,Latef Tarik Bin Abdul,Yamada Yoshihide,Mahadi Wan Nor Liza Binti Wan,Othman Mohamadariff,Kamardin Kamilia,Hussein Mousa I.,Najam Ali ImranORCID

Abstract

Communication with low radar signature platforms requires antennas with low backscatter, to uphold the low observability attribute of the platforms. In this work, we present the design for a Fabry–Perot (F-P) cavity antenna with low monostatic radar cross section (RCS) and enhanced gain. In addition, peak radiation is tilted inthe elevation plane. This is achieved by incorporating phase gradient metasurface (PGM) with absorptive frequency selective surface (FSS). The periodic surface of metallic square loops with lumped resistors forms the absorptive surface, placed on top of a partially reflecting surface (PRS) with an intervening air gap. The double-sided PRS consists of uniform metallic patches etched in a periodic fashion on its upper side. The bottom surface consists of variable-sized metallic patches, to realize phase gradient. The superstrate assembly is placed at about half free space wavelength above the patch antenna resonating at 6.6 GHz. The antenna’s ground plane and PRS together construct the F-P cavity. A peak gain of 11.5 dBi is achieved at 13° tilt of the elevation plane. Wideband RCS reduction is achieved, spanning 5.6–16 GHz, for x- and y-polarizations of normally incident plane wave. The average RCS reduction is 13 dB. Simulation results with experimental verifications are presented.

Funder

Universiti Malaya

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A progression in the techniques of reducing RCS for the targets;Alexandria Engineering Journal;2024-08

2. Radar near-field sensing using metasurface for biomedical applications;Communications Engineering;2024-03-19

3. An anisotropic PRS for squinting the radiation pattern with gain improvement of MIMO system;AEU - International Journal of Electronics and Communications;2024-03

4. Design of Broadband Low-RCS Array Antennas Based on Characteristic Mode Cancellation;Electronics;2023-03-24

5. RCS Reduction of an FP antenna through both in-band scattering and out-of-band absorption;2022 International Applied Computational Electromagnetics Society Symposium (ACES-China);2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3