Effect of Temperature on Channel Compensation in Optical Camera Communication

Author:

Moreno DanielORCID,Rufo JulioORCID,Guerra VictorORCID,Rabadan JoseORCID,Perez-Jimenez RafaelORCID

Abstract

General-purpose Complementary Metal Oxide Semiconductor (CMOS) sensors perform the image desegregation in three channels (red, green, and blue) as a result of a band-pass wavelength filtering carried out using Foveon or Bayer filters. This characteristic can be used in Optical Camera Communication (OCC) systems for increasing the links’ data rate by introducing Wavelength Division Multiplexing (WDM) or Color Shift Keying (CSK) modulation schemes. However, these techniques need a compensation stage to mitigate the cross-talk between channels introduced by the filters. This compensation is performed by a Channel State Information (CSI) estimation and a zero-forcing compensation scheme. The impact of the temperature effects of light-emitting diode (LED) emissions on the zero-forcing compensation scheme’s performance has not been analyzed in depth. This work presents a comprehensive methodology and experimental characterization of this impact for Foveon and Bayer-based image sensors, assuming that the CSI is estimated under temperature conditions different from the LED’s stationary temperature regime. Besides, Signal-to-Interference-plus-Noise Ratio (SINR) and Bit Error Rate (BER) performance metrics are presented in order to estimate the repercussion in an OCC link. The results reveal that the Foveon sensor obtains more unsatisfactory performance than the Bayer-based sensor. On the other hand, the blue band is the most penalized by the thermal effect.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multispectral Optical camera communication links based on spectral signature multiplexing;IET Optoelectronics;2023-06-08

2. Spectral Signature Multiplexing in Multispectral Camera Communication;2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP);2022-07-20

3. Closed Form Approximation of the Actual Spectral Power Emission of Commercial Color LEDs for VLC;Journal of Lightwave Technology;2022-07-01

4. Comparison of clustering algorithms for data detection in Multispectral Camera Communication;2022 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC);2022-05-12

5. Clustering-based data detection for spectral signature multiplexing in multispectral camera communication;Optics Letters;2022-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3