Spatially-Resolved Multiply-Excited Autofluorescence and Diffuse Reflectance Spectroscopy: SpectroLive Medical Device for Skin In Vivo Optical Biopsy

Author:

Blondel Walter,Delconte Alain,Khairallah Grégoire,Marchal Frédéric,Gavoille Amélie,Amouroux Marine

Abstract

This contribution presents the development of an optical spectroscopy device, called SpectroLive, that allows spatially-resolved multiply-excited autofluorescence and diffuse reflectance measurements. Besides describing the device, this study aims at presenting the metrological and safety regulation validations performed towards its aimed application to skin carcinoma in vivo diagnosis. This device is made of six light sources and four spectrometers for detection of the back-scattered intensity spectra collected through an optical probe (made of several optical fibers) featuring four source-to-detector separations (from 400 to 1000 µm). In order to be allowed by the French authorities to be evaluated in clinics, the SpectroLive device was successfully checked for electromagnetic compatibility and electrical and photobiological safety. In order to process spectra, spectral correction and metrological calibration were implemented in the post-processing software. Finally, we characterized the device’s sensitivity to autofluorescence detection: excitation light irradiance at the optical probe tip in contact with skin surface ranges from 2 to 11 W/m², depending on the light source. Such irradiances combined to sensitive detectors allow the device to acquire a full spectroscopic sequence within 6 s which is a short enough duration to be compatible with optical-guided surgery. All these results about sensitivity and safety make the SpectroLive device mature enough to be evaluated through a clinical trial that aims at evaluating its diagnostic accuracy for skin carcinoma diagnosis.

Funder

Conseil Régional de Lorraine

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3