Cyber Threat Intelligence Framework for Incident Response in an Energy Cloud Platform

Author:

Gong SeonghyeonORCID,Lee ChanghoonORCID

Abstract

Advanced information technologies have transformed into high-level services for more efficient use of energy resources through the fusion with the energy infrastructure. As a part of these technologies, the energy cloud is a technology that maximizes the efficiency of energy resources through the organic connection between the entities that produce and consume the energy. However, the disruption or destruction of energy cloud systems through cyberattacks can lead to incidents such as massive blackouts, which can lead to national disasters. Furthermore, since the technique and severity of modern cyberattacks continue to improve, the energy cloud environment must be designed to resist cyberattacks. However, since the energy cloud environment has different characteristics from general infrastructures such as the smart grid and the Advanced Metering Infrastructure (AMI), it requires security technology specialized to its environment. This paper proposes a cyber threat intelligence framework to improve the energy cloud environment’s security. Cyber Threat Intelligence (CTI) is a technology to actively respond to advanced cyber threats by collecting and analyzing various threat indicators and generating contextual knowledge about the cyber threats. The framework proposed in this paper analyzes threat indicators that can be collected in the advanced metering infrastructure and proposes a cyber threat intelligence generation technique targeting the energy cloud. This paper also proposes a method that can quickly apply a security model to a large-scale energy cloud infrastructure through a mechanism for sharing and spreading cyber threat intelligence between the AMI layer and the cloud layer. Our framework provides a way to effectively apply the proposed technologies through the CTI architecture, including the local AMI layer, the station layer, and the cloud layer. Furthermore, we show that the proposed framework can effectively respond to cyber threats by showing a 0.822 macro-F1 score and a 0.843 micro-F1 score for cyberattack detection in an environment that simulates a model of an attacker and an energy cloud environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3