A Single-Terminal Fault Location Method for HVDC Transmission Lines Based on a Hybrid Deep Network

Author:

Wang LeiORCID,He Yigang,Li Lie

Abstract

High voltage direct current (HVDC) transmission systems play an increasingly important role in long-distance power transmission. Realizing accurate and timely fault location of transmission lines is extremely important for the safe operation of power systems. With the development of modern data acquisition and deep learning technology, deep learning methods have the feasibility of engineering application in fault location. The traditional single-terminal traveling wave method is used for fault location in HVDC systems. However, many challenges exist when a high impedance fault occurs including high sampling frequency dependence and difficulty to determine wave velocity and identify wave heads. In order to resolve these problems, this work proposed a deep hybrid convolutional neural network (CNN) and long short-term memory (LSTM) network model for single-terminal fault location of an HVDC system containing mixed cables and overhead line segments. Simultaneously, a variational mode decomposition–Teager energy operator is used in feature engineering to improve the effect of model training. 2D-CNN was employed as a classifier to identify fault segments, and LSTM as a regressor integrated the fault segment information of the classifier to achieve precise fault location. The experimental results demonstrate that the proposed method has high accuracy of fault location, with the effects of fault types, noise, sampling frequency, and different HVDC topologies in consideration.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3