Fog Computing Enabled Locality Based Product Demand Prediction and Decision Making Using Reinforcement Learning

Author:

Neelakantam GoneORCID,Onthoni Djeane DeboraORCID,Sahoo Prasan KumarORCID

Abstract

Wastage of perishable and non-perishable products due to manual monitoring in shopping malls creates huge revenue loss in supermarket industry. Besides, internal and external factors such as calendar events and weather condition contribute to excess wastage of products in different regions of supermarket. It is a challenging job to know about the wastage of the products manually in different supermarkets region-wise. Therefore, the supermarket management needs to take appropriate decision and action to prevent the wastage of products. The fog computing data centers located in each region can collect, process and analyze data for demand prediction and decision making. In this paper, a product-demand prediction model is designed using integrated Principal Component Analysis (PCA) and K-means Unsupervised Learning (UL) algorithms and a decision making model is developed using State-Action-Reward-State-Action (SARSA) Reinforcement Learning (RL) algorithm. Our proposed method can cluster the products into low, medium, and high-demand product by learning from the designed features. Taking the derived cluster model, decision making for distributing low-demand to high-demand product can be made using SARSA. Experimental results show that our proposed method can cluster the datasets well with a Silhouette score of ≥60%. Besides, our adopted SARSA-based decision making model outperforms over Q-Learning, Monte-Carlo, Deep Q-Network (DQN), and Actor-Critic algorithms in terms of maximum cumulative reward, average cumulative reward and execution time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3