Improving Energy Efficiency of Irrigation Wells by Using an IoT-Based Platform

Author:

López-Morales Juan A.ORCID,Martínez Juan A.ORCID,Skarmeta Antonio F.ORCID

Abstract

The irrigation sector has undergone a remarkable transformation in recent decades due to the application of pressurized water distribution technologies, improving the management of limited water resources. As a result of this transformation, irrigation has become, together with agricultural machinery, the primary consumer of energy within the agri-food sector. Furthermore, the energy cost of operating pumping equipment during a farming season represents 30–40% of the crop’s total cost. For this reason, one of the most interesting challenges in this scope is that of improving energy efficiency and reducing economic costs so that productive work become more and more competitive. Energy audit makes possible to determine the efficiency of installations, and enables to determine energy saving protocols (requirements), for this reason the aim of this article is to carry out these by using IoT-based systems. The proposed system improves decision-making on agricultural pumping management by classifying wells’ efficiency and integrating the data sets that determine their efficiency into a single information model. The system monitors energy efficiency according to different parameters such as: infrastructure, energy consumption, electric rates, manometric height or type of installation, making it possible to enhance each pumping operation’s decisions. This solution has been deployed in an irrigation community in southeast Spain whose results have warned about the lack of efficiency in two of its wells: in one of them it is proposed that they be replaced, due to the high cost of pumping water, and in the other, hydraulic mechanisms are implemented to improve the water-energy binomial.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on the contribution of farming practices and technologies towards climate-smart agricultural outcomes in a European context;Smart Agricultural Technology;2024-03

2. ComDeX: A Context-aware Federated Platform for IoT-enhanced Communities;Proceedings of the 17th ACM International Conference on Distributed and Event-based Systems;2023-06-27

3. Sustainable Irrigation Requirement Prediction Using Internet of Things and Transfer Learning;Sustainability;2023-05-18

4. A New Irrigation System Without Any External Sources;Journal of The Institution of Engineers (India): Series A;2023-04-06

5. Enabling IoT-enhanced Transportation Systems using the NGSI Protocol;Proceedings of the 12th International Conference on the Internet of Things;2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3