A Neural Network Classifier with Multi-Valued Neurons for Analog Circuit Fault Diagnosis

Author:

Aizenberg Igor,Belardi Riccardo,Bindi MarcoORCID,Grasso FrancescoORCID,Manetti StefanoORCID,Luchetta AntonioORCID,Piccirilli Maria CristinaORCID

Abstract

In this paper, we present a new method designed to recognize single parametric faults in analog circuits. The technique follows a rigorous approach constituted by three sequential steps: calculating the testability and extracting the ambiguity groups of the circuit under test (CUT); localizing the failure and putting it in the correct fault class (FC) via multi-frequency measurements or simulations; and (optional) estimating the value of the faulty component. The fabrication tolerances of the healthy components are taken into account in every step of the procedure. The work combines machine learning techniques, used for classification and approximation, with testability analysis procedures for analog circuits.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analog Circuit Fault Diagnosis Based on Machine Learning Using Frequency Domain Features;2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN);2024-06-03

2. Fault detection in analog electronic circuits using fuzzy inference systems and particle swarm optimization;Alexandria Engineering Journal;2024-05

3. Analog Circuit Fault Classification Detection Based on Adam-CNN Models;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

4. Residual current detection method based on improved VMD-BPNN;PLOS ONE;2024-02-08

5. A novel fault diagnosis method for second-order bandpass filter circuit based on TQWT-CNN;PLOS ONE;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3