Abstract
This study aims to provide a simple approach to characterize the effects of scattering by human bodies in the vicinity of a short-range indoor link at 28 GHz while the link is fully blocked by another body. In the study, a street canyon propagation characterized by a four-ray model is incorporated to consider the human bodies. For this model, the received signal is assumed to be composed of a direct component that is exposed to shadowing due to a human body blocking the link and a multipath component due to reflections from human bodies around the link. In order to predict the attenuation due to shadowing, the double knife-edge diffraction (DKED) model is employed. Moreover, to predict the attenuation due to multipath, the reflected fields from the human bodies around the link are used. The measurements are compared with the simulations in order to evaluate the prediction accuracy of the model. The acceptable results achieved in this study suggest that this simple model might work correctly for short-range indoor links at millimeter-wave (mmWave) frequencies.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献