Research on Invulnerability Technology of Node Attack in Space-Based Information Network Based on Complex Network

Author:

Liu Chengxiang,Xiong Wei,Zhang YingORCID,Sun Yang,Xiong Minghui,Guo Chao

Abstract

With the rapid development of communications technology, the space-based information network (SBIN) is increasingly threatened by the outside world. Dynamic changes in any part of its interior can cause the collapse of the entire network. Therefore, research on the invulnerability of SBIN has become an urgent need to promote the economic development of our country and improve the living standards of our people. To this end, this paper has carried out research on the node-attacked invulnerability of SBIN based on the complex network theory. First, based on the model of SBIN, the internal parameters of the network are analyzed theoretically based on complex networks. Second, the paper proposes an improved tree attack strategy to analyze the invulnerability of SBIN, which constitutes a problem where the traditional attack strategy has a low invulnerability and the connected edge cannot fully realize the network function. Then, based on the improved tree attack strategy algorithm, this paper optimizes the invulnerability of SBIN by constructing four different edge-increasing strategies. Through the research, the LDF edge-increasing strategy makes the entire network flatter and can effectively improve the network’s ability to resist destruction. The research of invulnerability based on the complex network has a certain technical support and theoretical guidance for the construction of a reasonable and stable SBIN.

Funder

Node value analysis and invulnerability technology research based on complex networks

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3