Fuzzy System and Time Window Applied to Traffic Service Network Problems under a Multi-Demand Random Network

Author:

Huang Chia-LingORCID,Huang Sin-Yuan,Yeh Wei-Chang,Wang Jinhai

Abstract

The transportation network promotes key human development links such as social production, population movement and resource exchange. As cities continue to expand, transportation networks become increasingly complex. A bad traffic network design will affect the quality of urban development and cause regional economic losses. How to plan transportation routes and allocate transportation resources is an important issue in today’s society. This study uses the network reliability method to solve traffic network problems. Network reliability refers to the probability of a successful connection between the source and sink nodes in the network. There are many systems in the world that use network architecture; therefore, network reliability is widely used in various practical problems and cases. In the past, some scholars have used network reliability to solve traffic service network problems. However, the processing of time is not detailed enough to fully express the real user’s time requirements and does not consider that the route traffic will affect the reliability of the entire network. This study improves on past network reliability methods by using a fuzzy system and a time window to construct a network model. Using the concept of fuzzy systems, according to past experience, data or expert predictions to define the degree of flow, time and reliability, can also determine the relationship between these factors. The time window can be adjusted according to the time limit in reality, reaching the limit of the complete expression time. In addition, the network reliability algorithm used in this study is a direct algorithm. Compared with the past indirect algorithms, the computation time is greatly reduced and complex problems can be solved more efficiently.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3