Real-Time High-Load Infrastructure Transaction Status Output Prediction Using Operational Intelligence and Big Data Technologies

Author:

Fedushko SolomiaORCID,Ustyianovych TarasORCID,Gregus MichalORCID

Abstract

An approach to use Operational Intelligence with mathematical modeling and Machine Learning to solve industrial technology projects problems are very crucial for today’s IT (information technology) processes and operations, taking into account the exponential growth of information and the growing trend of Big Data-based projects. Monitoring and managing high-load data projects require new approaches to infrastructure, risk management, and data-driven decision support. Key difficulties that might arise when performing IT Operations are high error rates, unplanned downtimes, poor infrastructure KPIs and metrics. The methods used in the study include machine learning models, data preprocessing, missing data imputation, SRE (site reliability engineering) indicators computation, quantitative research, and a qualitative study of data project demands. A requirements analysis for the implementation of an Operational Intelligence solution with Machine learning capabilities has been conducted and represented in the study. A model based on machine learning algorithms for transaction status code and output predictions, in order to execute system load testing, risks identification and, to avoid downtimes, is developed. Metrics and indicators for determining infrastructure load are given in the paper to obtain Operational intelligence and Site reliability insights. It turned out that data mining among the set of Operational Big Data simplifies the task of getting an understanding of what is happening with requests within the data acquisition pipeline and helps identify errors before a user faces them. Transaction tracing in a distributed environment has been enhanced using machine learning and mathematical modelling. Additionally, a step-by-step algorithm for applying the application monitoring solution in a data-based project, especially when it is dealing with Big Data is described and proposed within the study.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. Quantitative Comparison of Big Data Analytics and Business Intelligence Project Success Factors;Miller;Inf. Technol. Manag. Emerg. Res. Appl. Lect. Notes Bus. Inf. Process.,2018

2. Big Data from Social Media and Scientific Literature Databases Reveals Relationships Among Risk Management, Project Management and Project Success. Project Management and Project Success Symposium, September 2019https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3459936

3. Big data and predictive analytics for supply chain and organizational performance

4. Building consistent formal specification for the service enterprise agility foundation

5. Service Orientation of Enterprises-Aspects, Dimensions, Technologies;Gregus,2015

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3