Abstract
An approach to use Operational Intelligence with mathematical modeling and Machine Learning to solve industrial technology projects problems are very crucial for today’s IT (information technology) processes and operations, taking into account the exponential growth of information and the growing trend of Big Data-based projects. Monitoring and managing high-load data projects require new approaches to infrastructure, risk management, and data-driven decision support. Key difficulties that might arise when performing IT Operations are high error rates, unplanned downtimes, poor infrastructure KPIs and metrics. The methods used in the study include machine learning models, data preprocessing, missing data imputation, SRE (site reliability engineering) indicators computation, quantitative research, and a qualitative study of data project demands. A requirements analysis for the implementation of an Operational Intelligence solution with Machine learning capabilities has been conducted and represented in the study. A model based on machine learning algorithms for transaction status code and output predictions, in order to execute system load testing, risks identification and, to avoid downtimes, is developed. Metrics and indicators for determining infrastructure load are given in the paper to obtain Operational intelligence and Site reliability insights. It turned out that data mining among the set of Operational Big Data simplifies the task of getting an understanding of what is happening with requests within the data acquisition pipeline and helps identify errors before a user faces them. Transaction tracing in a distributed environment has been enhanced using machine learning and mathematical modelling. Additionally, a step-by-step algorithm for applying the application monitoring solution in a data-based project, especially when it is dealing with Big Data is described and proposed within the study.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference27 articles.
1. Quantitative Comparison of Big Data Analytics and Business Intelligence Project Success Factors;Miller;Inf. Technol. Manag. Emerg. Res. Appl. Lect. Notes Bus. Inf. Process.,2018
2. Big Data from Social Media and Scientific Literature Databases Reveals Relationships Among Risk Management, Project Management and Project Success. Project Management and Project Success Symposium, September 2019https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3459936
3. Big data and predictive analytics for supply chain and organizational performance
4. Building consistent formal specification for the service enterprise agility foundation
5. Service Orientation of Enterprises-Aspects, Dimensions, Technologies;Gregus,2015
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献