Abstract
This study proposes a Self-evolving Takagi-Sugeno-Kang-type Fuzzy Cerebellar Model Articulation Controller (STFCMAC) for solving identification and prediction problems. The proposed STFCMAC model uses the hypercube firing strength for generating external loops and internal feedback. A differentiable Gaussian function is used in the fuzzy hypercube cell of the proposed model, and a linear combination function of the model inputs is used as the output of the proposed model. The learning process of the STFCMAC is initiated using an empty hypercube base. Fuzzy hypercube cells are generated through structure learning, and the related parameters are adjusted by a gradient descent algorithm. The proposed STFCMAC network has some advantages that are summarized as follows: (1) the model automatically selects the parameters of the memory structure, (2) it requires few fuzzy hypercube cells, and (3) it performs identification and prediction adaptively and effectively.
Funder
the Ministry of Science and Technology of the Republic of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献