Secure PHY Layer Key Generation in the Asymmetric Power Line Communication Channel

Author:

Passerini FedericoORCID,Tonello Andrea M.ORCID

Abstract

Leakage of information in power line communication (PLC) networks is a threat to privacy and security. A way to enhance security is to encode the transmitted information with the use of a secret key. If the communication channel exhibits common characteristics at both ends and these are unknown to a potential eavesdropper, then it is possible to locally generate a common secret key at the two communication ends without the need for sharing it through the broadcast channel. This is known as physical layer key generation. To this aim, known techniques have been developed exploiting the transfer function of symmetric channels. However, the PLC channel is in general not symmetric, but just reciprocal. Therefore, in this paper, we first analyze the characteristics of the channel to verify whether physical layer key generation can be implemented. Then, we propose two novel methods that exploit the reciprocity of the PLC channel to generate common information by the two intended users. This information is processed through different quantization techniques to generate secret keys locally. To assess the security of the generated keys, we analyze the spatial correlation of PLC channels. This allows verifying whether the eavesdropper’s channels are weakly correlated with the intended users’ channel. Consequently, it is found that the information leaked to a possible eavesdropper has very low correlation to the locally generated key. The analysis and proposed methods are validated on a measurement dataset.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PLC Network Integrity Solution;Advances in Information Security;2024

2. Authentication Method for PLC Network;Advances in Information Security;2024

3. Confidentiality Technique for PLC Networks;Advances in Information Security;2024

4. Physical Layer Security in Power Line Communications;Advances in Information Security;2024

5. Power Line Communication Channel Characteristics;Advances in Information Security;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3