High-Capacity Data Hiding for ABTC-EQ Based Compressed Image

Author:

Kim CheonshikORCID,Yang Ching-Nung,Leng LuORCID

Abstract

We present a new data hiding method based on Adaptive BTC Edge Quantization (ABTC-EQ) using an optimal pixel adjustment process (OPAP) to optimize two quantization levels. The reason we choose ABTC-EQ as a cover media is that it is superior to AMBTC in maintaining a high-quality image after encoding is executed. ABTC-EQ is represented by a form of t r i o ( Q 1 , Q 2 , [ Q 3 ] , BM) where Q is quantization levels ( Q 1 ≤ Q 2 ≤ Q 3 ) , and BM is a bitmap). The number of quantization levels are two or three, depending on whether the cover image has an edge or not. Before embedding secret bits in every block, we categorize every block into smooth block or complex block by a threshold. In case a block size is 4x4, the sixteen secret bits are replaced by a bitmap of the smooth block for embedding a message directly. On the other hand, OPAP method conceals 1 bit into LSB and 2LSB respectively, and maintains the quality of an image as a way of minimizing the errors which occur in the embedding procedure. The sufficient experimental results demonsrate that the performance of our proposed scheme is satisfactory in terms of the embedding capacity and quality of an image.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Department of Science and Technology

China Scholarship Council

Ministry of Science and Technology

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. Local-Prediction-Based Difference Expansion Reversible Watermarking

2. Techniques for data hiding

3. Reversible Data Hiding in JPEG Images

4. Data hiding using sequential hamming +k with m overlapped pixels;Kim;KSII Trans. Internet Inf.,2019

5. LSB matching revisited

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3